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A THREE-DIMENSIONAL ANALYSIS OF A TANGENTIAL YO-YO

DESPIN DEVICE ON A ROTATING BODY

By Robert L. Collins, Jr.

Langley Research Center

SUMMARY

The problem of despinning a rotating rigid body by the release of yo-yo despin

weights is considered. Although studies have been made previously for the two-

dimensional case of a fixed spin axis, there has been little effort to incorporate an ini-

tial coning angle which, in general, leads to a three-dimensional problem. This study

considers the effect of an initial coning motion on the parameters which influence the

design of a yo-yo despin system. The differential equations of motion of the system are

derived for a symmetric rigid body and these are integrated numerically to provide solu-

tions for several specific cases. The results show that a two-dimensional study is suf-

ficient to predict such parameters as cable length, cable tension, and time required to

despin, as long as the initial coning angle is less than 10 ° to 30 °, and the masses of the

despin weights are not too small. The parameters plotted in this study give an indication

of the effects of initial coning angle on the design parameters of interest for what is

called tangential motion.

INTRODUCTION

A typical problem area in the design of earth orbiting satellites is the reduction of

the angular velocity which may occur after injection into orbit. One efficient technique of

despinning a satellite is by the use of a so-called yo-yo despin device. Basically, this

device is a simple arrangement of small masses attached to cables which are wound about

the periphery of the spinning body in a plane perpendicular to the spin axis. When it is

desired to reduce the rotational rate of the body, the despin weights are released and they

move away from the body constrained only by the cables which unwrap from the body.

The tension produced in the cables causes a moment which reduces the spin rate of the

body. Essentially, the angular rotation of the body is reduced by transferring a desired

quantity of angular momentum from the body to the despin weights. When sufficient

angular momentum is transferred to obtain the desired reduced body spin rate, the cables

are released from the body which then rotates in space independent of the yo-yo system.



In this study it is assumedthat the cables are initially wrappedin a circle about
the body andtherefore, during the unwindingphaseof the motion, the cables will remain
tangentto this "wrapping circle." This phaseof the motion has beenreferred to as
"Phase I" motion in reference 2; however, the terminology "tangential phasemotion" is
usedin this paper. Manyprevious two-dimensional studies havealso included a second
phaseto the motion in which the cables are assumedto have a fixed length andare
attachedto the body by a hingeat the endoppositethe despinweights. Oncethe cables
haveunwrappedto their full length they swingawayfrom the tangentuntil they are at
somespecified anglewith the tangent,usually 90°, andthen they are released. This
phaseof the motion hasbeenreferred to as "Phase II" motion. This paper doesnot con-
sider despin caseswhich include this "nontangential" or PhaseII motion.

A particularly simple analysis of the motion of the yo-yo system may be madewhen
there is no initial coningmotion of the system. This motion is possible if the initial
angular rotation vector of the system lies along the axis of symmetry. In this casethe
initial angular momentumalso lies along the spin axis and if there are nodisturbances
on the despinweights or the body, the weightswill moveawayfrom the body in a plane
alwaysperpendicular to the symmetry axis. The angular momentumvector, the angular
rotation vector, andthe axis of symmetry will then remain in a fixed direction in space
andthe resulting analysis canbe treated as two dimensional. Thus, the two-dimensional
motion requires that the movementof the despinweights and cablestake place in a plane
fixed in spaceandcontainingthe initial circle of winding.

A study of the tangential phaseof the two-dimensional motion yields exact analytical
expressions for the variables of interest. The equationsof motion for the fixed or non-
tangential phasein the two-dimensional casehave not beensolvedas in the tangential
phasebut someresults canbe obtainedthrough the conservation of energy and angular
momentumprinciples. Studiesof this type are presentedin references 1 to 4. Refer-
ence2 gives a very concisetreatment andalso discussesthe correction necessary to
account,approximately, for the mass of the cables. Further studies of the two-
dimensional yo-yo are foundin reference 5 where it is notedthat variations from the
nominal designconditions may be partially nullified by using elastic cables. An analysis
of this "stretch yo-yo" and someexperimental dataare foundin references 6 and7.

An approximate solution for a three-dimensional problem is found in reference 8,
but so manyapproximations are madeon the configuration andkinematics of the system
that it is not applicable for general studies of yo-yo despinsystems. Reference 11,how-
ever, gives a comprehensivestudy of the three-dimensional problem considering both
phasesof the motion but doesnot give results for completedespinby tangential phase
motion only.



This paper presents a three-dimensional analysis of the parameters of motion
which are of interest in the design andstudy of a yo-yo despin system. The assumptions
madeon the system are similar to those of the two-dimensional tangential phasestudies
with certain additional hypotheseswhich keep this analysis from becomingtoo complex.
The equationsof motion for the system are written by applyingthe Euler equationsfor
rigid bodymotion to the rigid body and Newton's secondlaw to a despinweight. This
techniquewas used since it is directly applicable to this system while the Lagrangian or
the Hamiltonian techniquesrequire special attention and cannotbe directly appliedby the
usual methods. The Lagrangian methodsare invalid, in their usual formulation, for this
problem becausecertain assumptionshavebeenmade aboutthe configuration of the sys-
tem which introduces constraining forces that dowork during a virtual displacementof
the generalized coordinates. This procedure is contrary to thebasic postulates of ana-
lytical mechanicsand therefore the equationsusually derived from this approachcannot
beused without modification. In this vein it is also of interest to note that for the system
studiedherein, the total system kinetic energy decreases throughoutthe motion whenever
the despin cables andweights are out of the initial plane of their winding. This decrease
may be verified by making a detailed examinationof the results presentedand computing
the system kinetic energy at several instants during the motion. Further discussion of
this system may be found in reference 11.

The equationsof motion were integrated ondigital computer and the solutionswere
checkedby three separate means. First, the results for the two-dimensional theory
previously mentionedagree with thesesolutions for the two-dimensional cases_second,
the componentsof the system angular momentumvector were checkedin fixed spaceand
were foundto remain constant, andthird, anexpression for the sum of the time rate of
changeof the system kinetic energy andthe time rate of changeof the work doneby the
system was foundto be essentially zero as it shouldbe. Thesechecks are very con-
clusive as to the validity of the results presented.

SYMBOLS

a

A

AI,A2,A 3

aij

radius of cable windings

acceleration vector of despin weight

nondimensional magnitude of acceleration of despin weight

components of acceleration vector _[ along Xl, x2, and

elements of matrix from equations of motion (eq. (9))

x 3 axes



bl,b2,b3

bl,b2,b3

C1,C2,C 3

C

E1,E2,E 3

i,j

A _ A

i,j,k

I

II,I2,I 3

K

l

m

m b

T

nondimensional form of elements aij (eq. (12))

elements of inverse matrix of aij

auxiliary symbol for terms in equations of motion (eq. (9))

nondimensional form of bl,b2,b 3 (eq. (12))

Coriolis and centrifugal acceleration terms (eq. (A13))

conversion factor (eq. (19))

Euler acceleration terms (eq. (A14))

indices

unit vectors along Xl, x2, and x 3 axes

inertia ratio of body, I3/I 1

mass moments of inertia about Xl, x2, and

2ma 2
inertia factor for despin weights,

I1

length of cable unwound

x 3 axes

mass of a single despin weight

moment vector acting on body

mass of body without weights

distance from mass center to despin weight

time

tension in cable

vector tension acting on body, directed toward weight



7_
V

_I,V'2,_'3

xj

Xl,X2,X3

F

rl,r2,r3

rld r2ff, r3c_

T

CO

,?,,.
o.)

Wl,W2,W 3

nondimensional tension in cable

nondimensional velocity of despin weight

components of velocity of despin weight along

(eq. (A7))

quantities representing fl, }_, and T

Xl, x2, and x 3 axes

coordinate axes with origin fixed at mass center, directed along principal

axes of body

variables introduced to reduce second-order equations (eq. (14))

cable out-of-plane angle (sketch (1))

unwind angle (sketch (1))

coning angle (between 1¢

spinning angle (between

and angular momentum vector)

and _)

nondimensional radius vector

^

components of _ along Xl,

partial derivatives of

partial derivatives of

nondimensional time

angular velocity vector

r/a from mass center to despin weight

x2, and x 3 axes

rl,r2,r 3 with respect to fl

rl,r2,r 3 with respect to

nondimensional angular velocity vector

nondimensional angular velocity vector (eq. (A6))

components of angular velocity along Xl, x2, and x 3 axes



Wl,W2,w 3 nondimensional form of Wl,W2,w 3

_12 nondimensional cross-axis spin rate, VWl 2 + w22

Dots over symbols indicate time derivatives; primes denote dimensionless time

derivatives. A caret A over a symbol denotes a vector quantity and a tilde ~ over a

symbol denotes nondimensionalization. Quantities subscripted with o indicate that the

initial time (t = to) is being referred to.

ANALYSIS

Derivation of Equations of Motion

The despin system which is analyzed in this report consists of a symmetric rigid

body and two small masses or despin weights as they will be called. Each mass is

coupled to the rigid body by a perfectly flexible, inextensible, and massless cable which

is initially wound about the body. These cables are wrapped so that the despin weights

are diametrically opposite each other through the mass center of the rigid body at the

initial instant. The cables are assumed to be wrapped on the periphery of a circle which

has its center at the mass center of the rigid body and is perpendicular to the symmetry

axis of the rigid body. When the despin weights are released, they move outward and are

constrained only by the cables which connect them to the body. The force of constraint

acting on a weight is the tension in the cable and this tension manifests itself in a torque

which tends to retard the spin of the rigid body. Therefore, there is a strong interaction

or coupling between the motion of the rigid body and that of the weights.

The body-axes coordinate system and some of the quantities used to describe the

system configuration are found in sketch (1). A right-handed orthogonal coordinate sys-

tem Xl,X2,X 3 is fixed in the rigid body with its origin at the mass center of the body,

and the x3-axis lying along the symmetry axis of the body. Because of the symmetry of

the body, any choice of orientation of the Xl,X 2 axes produces a set of principal axes.

The choice for the Xl-axis , however, will be made so that it is alined with a despin weight

when that weight and cable arrangement is completely wound on the winding circle. The

second despin weight then lies initially along the negative xl-axis. The x2-axis completes

the right-handed triad.

Since the despin weights are initially released with positions and velocities sym-

metric through the origin, they will remain symmetric through the origin throughout the

motion. Because of this symmetry it will be necessary to analyze only one despin weight

and the weight initially along the positive xl-axis is used.



x3

x 2

Cable

x I Despin weight

Sketch (1)

The position of this weight is specified in terms of the body-axis coordinate system.

As the cable unwinds, the point of contact where the cable leaves the body is defined by

the vector _ which is rotated an angle /_ from the xl-axis. The unwound cable is

represented by the vector 1 in sketch (1) and must lie in a plane tangent to the cable

winding circle and parallel to the x3-axis. The angle cz is the angular measure of the

vector 1 from the plane of the Xl,X 2 axes. It should be noted that, as defined here, a

corresponds to the despin weight being "below" the Xl,X 2 plane in the sense

x 3 being "above" this plane. The angle fi is referred to as the unwind

as the out-of-plane angle.

positive o_

of positive

angle and

The length of cable unwound is given by the relation

l = a_

where a is the radius of the cable winding circle and where l

vector 1. With the constraint relation (1), the position vector

components along the body-axis coordinate system entirely in terms of the angles

and ft. These components are seen from the geometry of sketch (1) to be

r 1 = a(cos /3 + fi sin fi cos

r 2 a(sin _ - fl cos /_ cos

r 3 -a/3 sin

(1)

is the magnitude of the

may be written with

Ot

(2)



Because of the symmetry of the system, the mass center of the rigid body and the

mass center of the system occupy the same position in inertial space. Therefore, the

motion of the body is essentially that of a symmetric rigid body rotating about a fixed

point at the mass center and being acted upon by a moment which is varying with time.

This moment is due to the cable tension which acts along the vector 1. The angular

velocity vector & of the body is denoted by the components ¢01, w2, and w 3 along

the body axes. The force acting on the body due to the tension T in the cable is denoted

by the vector "r and the moment due to this tension is lVl. This moment is generated

by the two cables and may be expressed as

The force vector due to the tension _? and the vector a are seen from the geometry of

sketch (1) to be

= T(sin 19cos on- cos 19cos ej- sin otl¢) (3)

= a(cos 19i+ sin 19]) (4)

Where ], i, and k are the usual unit vectors along the Xl, x2, and x 3 body axes,

respectively. The moment vector then becomes

lVI = -2aT(sin (_ sin 19] - sin o_cos 19i + cos _i_) (5)

The equations of motion of the body are obtained directly by use of the Euler equa-

tions for rigid body motion about a fixed point. These equations may be found in refer-

ence 10, and for this symmetric rigid body become

IlCb 1 - (I 1 - I3)w2w 3 = -2aT sin _ sin fl_

IlCb 2 (I3 I1)WlW 3 2aT sin _ cos 19_ (6)

JI3cb 3 = -2aT cos

where 12 is replaced by its equivalent value I 1 due to symmetry.

Equations (6) are three differential equations for six unknown quantities Wl, w2,

w3, _, 19, and T. Therefore, it is necessary to obtain three other expressions in order

to specify the system completely. These expressions are obtained by applying Newton's

second law to a single despin weight.

The despin weight specified by the vector r, which has components along Xl, x2,

and x 3 given by equations (2), has a force acting on it caused by the cable tension

represented by -T. Therefore,



= m -- (7)
dt2

In thisreport the notation d/dt, d2/dt2 refers to derivatives with respect to time in an

inertialsense and ('), ('•)refers to derivatives taken in the xl,x2,x3 body-_is sys-

tem. With this definition the absolute velocity and acceleration vector components along

the body axes become

dr " ^ ^ "_
_-_-= r + w× r

(8)
2_ ., • •

dt 2

Equations (2), (3), (7), and (8) may be manipulated to provide three second-order

differential equations involving the quantities Wl, w2, w3, _ /3, and T and their

derivatives. These equations will be independent of the three equations derived for the

rigid body (eqs. (6)) and therefore a complete set of six differential equations and six

unknowns is established.

The manipulations and differentiations required to obtain the desired relations are

given in appendix A where it is shown that equation (7) may be written in the form

3

_ aijXj = bi (i= I, 2, 3) (9)and

j=l

The notation..Xj which willbe used again, signifiesthatthe components of Xj are the

quantities /3, }_,and T in that order for j = I, 2, 3, and where the coefficients aij

are given functions of _ and /3 only and the components bi are functions of col, w2,

w3, _, /3, _ and ft.

Equations (6) and (9) are the governing equations for this system, which can be inte-

grated to yield ¢Ol, w2, w3, _, /3, and T. These equations are nonlinear and it is

very doubtful that an exact closed form solution can be obtained; therefore, integration of

the equations by some numerical procedure is necessary.

Nondim ensionalization

In this section the parameters which appear in equations (6) and (9) are put into a

convenient nondimensional form for computation and for presentation of the results• It

may be noted that equations (6) and (9) as they stand contain the variables Wl, w2, w3,

/3, T, and t and constants I1, I3, m, a and that after nondimensionalizing, the

variables are _1, _2' w3, _, fl, _, and T whereas theconstants are I and K.

Note that the number of variables is the same and the constants are reduced to two.

9



Whennondimensionalizedin the manner presentedherein, the variables become
independentof the constants I and K for the tangential two-dimensional case. This
form thenhas the advantagethat one curve, in the family of curves to be presented,cor-
respondingto the two-dimensional or zero coningcasewill be the same for any of the
values of the I and K which are to be chosenfor study. This choice of nondimension-
alization therefore results in more convenientanduniform plots. For these reasons, the
following nondimensionalquantities are defined.

13
I =--

I1

2ma 2
K=_

I1

¢0

_1- 1
*O3o

= ___k___

I 2a.____T
= + K I3W3o

¢O3o
T- __t

J

(I0)

Note that

I I3

K 2ma 2

The subscript o in 0)30 implies that the angular velocity at the initial time is being
considered.

The equations of motion can then be rewritten in terms of these new parameters.

If the derivatives with respect to the nondimensional time T are denoted by primes,

equations (6) become

10



w_ = (I- I)_ + _ _2_3 - I_"sin _ sin fl

t'-

~' _/1 I - ~ IT
0)2 = (I- l)v+KCOlW3 +

sin cos

w 3 = -T cos ot

(11)

where _ and fl are

equations (9) rewritten in terms of these nondimensional parameters become

3

aijXj i

j=l

(i= 1, 2, and 3) (12)

where again corresponds to quantities _ , _, and "r and where aij and bi
are functionally

_j = ffij(I,K;_,_)

(I '~' _)bi = bi ,K;_l,W2,w3,o_ ,P,

The complete expressions for the aij and l_i are found in appendix A along with a

derivation of the equations and their nondimensionalization. Equations (11) and (12) are

the equations of motion which will provide the information to be presented in this report.

Integration of Equations of Motion

Equations (12) are not directly amenable to the usual techniques of integration by

digital computer since the left-hand side is a linear combination of the variable T and

of the second derivatives of _ and _. Therefore, in order to put these equations into

a more fundamental form, the components Xj are solved by use of Cramer's rule so
that

3

Xi = _ aijbj (i= I, 2, and 3) (13)A_,
j=l

ii



where the aij are the elements of a matrix which is the inverse of the matrix with

elements a_ij.

Equations (13) provide explicit relationships for the derivatives _' and _" and

also for the variable T. In order to obtain a complete set of first-order differential

equations in place of equations (11) and (13), a new set of variables are defined as follows:

Yl=bl

Y2 = _2

Y3 = b3

Y4 = _

Y5 = _

_T

Y6 = p

_T

Y7 = c_

(14)

With these new variables, equations (11) and

first-order differential equations:

3

= a3ib i
i=l

(13) may be written as a set of algebraic and

, _ I _ I _sin 1__Yl = + (1 - I)y2y 3- IT sin +_

' _ _ _ I_cos_+IY2 = + I- 1)yly 3 +ITsin +_ _

' =-T cos +--I a
Y3 K

Y4 = Y6

Y7

3

alib i
i=l

3

a2ibi
i=l

T

Y6 =

Y7 =

(15)

12



Equations(15)are nowin a convenientform for numerical integration. However,
at the initial instant the coefficient matrix of equations(12) is singular. Hence, special
methodsmust beused to begin the integration and a simple techniqueis shownin appen-
dix B which overcomesthis difficulty. The only initial quantities neededto begin the

integration arethe constants I and K andthevariables ¢Olo and ¢02o. All otherz.
variables are obtained by setting the unwind angle f7 and the relative velocity r equal

to zero at the initial instant. This result is also shown in appendix B.

Descriptive Parameters of the Motion

Thus far, it has been shown that the motion of the tangential yo-yo despin system

analyzed in this report can be described in terms of the quantities Wl' w2' w3' _' _'

the nondimensional tension 2", and the nondimensional time T. A particular motion

results from a choice of the quantities I and K and the initial conditions _1o and

_2o" Two other quantities which are of interest are the initial coning angle F o and the

cross-axis spin rate _12" The initial coning angle is the angle between the angular

momentum vector and the axis of symmetry of the system before the despin process

takes place. The motion before deployment of the despin weights is characterized by

this coning angle and is described in references 8 and 9.

Since both the axis of symmetry and the angular momentum vector of the rigid body

move in inertial space during the despin process, the instantaneous value of the coning

angle is somewhat academic, but the initial value F o is important in the physical inter-

pretation it provides. The coning angle is computed from

tan-1( _ 12_ (16,

where _12 is the cross-axis spin rate and is the magnitude of the nondimensional

angular rotation vector in the Xl,X 2 plane or

Another angle which has some academic importance and which is presented in the data is

the spinning angle 5. This angle is the angle between the angular rotation vector and

the body symmetry axis or

tan-1(_12- /
8 -- ] (18)

From the relations (16) and (17) it may be seen that the initial values Wlo and _2o

be determined from F o and _2o/_1o'/ In the subsequent analysis these lattermay

13



quantities are used as initial conditions rather than _1o
the relations necessaryto obtain 31o and _2o from

and _2o" AppendixB gives
Fo and _1o/_2o.

RESULTSANDDISCUSSION

The equationsof motion canbe integrated oncethe constants I and K andthe

initial conditions W2o/Wlo and F o are specified. The integrations are ended when

the symmetry axis spin rate w 3 is reduced to zero or if some other condition which is

physically unrealistic occurs. For instance, the integrations end whenever a becomes

90 °, since this condition would most likely correspond to physical interference between

the cable or despin weight and the rigid body. Another physical restriction on the vari-

ables occurs when the unwind angle /3 reaches a maximum value and begins to decrease.

This "rewinding" of the cable (that is, 13 decreasing) is not physically possible since it

requires a constraint at the point of contact of the cable and winding circle (defined by

_) to "tuck" the cable back into or along the winding circle. Since a mechanism to pro-

vide such a constraint is not considered in this study, the event of fi decreasing is not

allowed.

Three values of I were chosen for this investigation which would represent dif-

ferent geometrical configurations for a rigid body of constant density. Sketch (2) shows

the relative geometry of right circular cylinders and cones which have the inertia ratios:

I = 0.1, 0.9, and 1.3

x 3
x 3

1

used in this study.

x 3
x 3 x3

x 3

I = 0.1 I--- 0.9 I = 1.3

Sketch (2)

The inertia ratio K is an important design parameter since it contains both the

despin mass m and the initial cable winding radius a. In order to obtain realistic

values for this parameter, the right circular cone and right circular cylinder were again

considered. If a constant mass density is assumed, it is possible from the equations of

mechanics to derive the following relationships:

14



K = 4/_bb)I (Cylinder)

15_m._i
I,:: Tt -- u) (Cone)

where m b is the mass of the rigid body and m is the mass of a single despin weight.

Therefore, if I is known, the inertia ratio K is determined by the ratio m//m b. In
this paper the value of the mass ratio was chosen to lie between the limits of 0.0005 to

0.05 which correspond to a total mass for both despin weights of 0.1 percent to 10 percent

of the body mass. The value of K from these considerations must be approximately

0.0002 < K _-<0.02

0.0018 < K < 0.18

0.0026 <=K =<0.26

(I = 0.1)

(I = 0.9)

(I = 1.3)

The parameter W2o/Wlo was taken as unity in every case of this study. This

value was assumed to be a representative one and a change in this value should not affect

the general trend of the results obtained here, especially for the smaller coning angles.
l

Changing this ratio essentially varies the initial conditions _'o' No, and To"

The initial coning angles studied are F o = 0 °, 10 °, 20 °, 30 °, 40 °, and 50 °. The

angle of 50 ° seems to be a reasonable upper limit for practical considerations since at

this value the body has a larger component of angular momentum in the Xl,X 2 plane

than along the symmetry axis. It should be recalled that the initial condition F o = 0 °

implies that the ensuing motion is two dimensional.

Figures 1, 2, and 3 are time histories of the quantities 512 , _3' T' F, 5, _,

and _ for various values of F o and for three specific sets of values for I and K.

Figures 4, 5, and 6 are presented to give some indication of the effects of changes in the

design quantity K on several important parameters of the motion for the three geome-

tries specified by I = 0.1, 0.9, and 1.3.

Time histories for a particular body despin weight system I = 0.1, K = 0.001

are presented in figure 1. The most significant features are the nearly constant values

of the cross-axis spin and small effect of coning angle on the spin rate, cable tension, and

cable length. The design quantities _3' _, and _ could have been predicted very

accurately by the two-dimensional techniques given in reference 2. In figure l(d) the

coning angle and spinning angles are presented. At despin @3 = 0), these angles are both

90 ° which will always be the case when some residual tumbling rate or residual cross

axis spin rate exists. Figure l(e) reveals that the maximum value of the out-of-plane

angle is approximately two-thirds of the initial coning angle.

15



In figure 2, time histories are presented for the sameparameters as in figure 1
but for the different geometrical case I = 0.9, K = 0.01. It is significant to note that

there is considerable deviation from the two-dimensional case of all the variables plotted

for initial coning angles of about 30 ° or larger. Also note that there is a decrease in the

cross-axis spin rate _12 during the despin which is usually desirable since the final

value is the residual tumbling rate after despin. The out-of-plane angle (fig. 2(e)) has a

maximum value which is approximately twice the initial coning angle.

It was mentioned previously that whenever the angle /3 reached a (local) maximum

during the despin process and then began to decrease, the integration was stopped. This

event occurs on the F o = 50 ° case of figure 2. Figure 2(f) shows /3 reaching its

maximum where its slope is zero. At this point the integration is stopped and this occur-

rence is noted in figure 2(b) which shows that the symmetry axis spin rate has a value of

about 0.075 at the end of the integration.

Figure 3 is a set of time histories of the significant parameters of the motion for

I = 1.3 and K = 0.015. The trends of the variations are similar to those of figure 2;

however, the magnitudes of the variations are considerably larger. The maximum values

of the angle _ are, as in the previous case, about twice the initial coning angle. The

case of fl reaching a maximum value does not occur in these cases, although, as indi-

cated in figure 3(f), the slope of the curve of _ plotted against r for F o = 50 ° and

T = 0.5 is very nearly zero. When compared with the curves of figure 1, the variations

of these curves from the two-dimensional case (Fo = 0 °) are very large.

The figures showing the nondimensional cable tension (figs. l(c), 2(c), and 3(c))

have been nondimensionalized by the quantity W3o and not by the total rotational velocity

magnitude c0o. A false impression of the effect of coning angle on the cable tension may

be given if these figures are not interpreted properly. If it is desired to obtain the change

in cable tension because of a change in the coning angle for a fixed value of the magnitude

of the angular rotation vector, a nondimensionalization based on the quantity w o should

be used. A simple conversion for altering the nondimensional form is

2a + K T = CT

I3Wo 2

where

1
C = (19)

1 + (I tan to) 2

If this conversion factor is used for the case presented in figure 3(c) and for T = 0.6, the

value of nondimensional tension based on w 2 rather than w2 o for F o = 50 ° is 0.7 as
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comparedwith 2.35 for T. Therefore, whencomparedwith the Fo = 0 case, it is

observed that for a given value of the total rotational magnitude ¢Oo, the cable tension

decreases with increasing initial coning angle.

In figures 4, 5, and 6, four parameters of basic interest for the design of a despin

system are presented as a function of the ratio K/I for various values of the initial

coning angle. These curves represent the three basic geometries I = 0.1, 0.9 and 1.3.

Values of _12' r, and _ at the instant when 5 3 is zero are presented along with the

maximum value of the nondimensional cable tension.

In figures 5 and 6 an absence of data for F o = 50 ° may be noticed. This lack is

due to the occurrence of the rewinding phenomena (/3 = _max) mentioned previously and

shown in figure 2. Also, in figures 5 and 6, some of the curves are dotted and some

dashed for reading clarity in the rather congested area at low values of K/I.

The quantity _12 at w 3 = 0 represents the residual tumbling rate of the system

and its variation with F o and K/I are given in figures 4(a), 5(a), and 6(a) for the three

values of I considered. For I = 0.1, this final cross-axis spin rate is independent of

the inertia ratio parameter for all values of the initial coning angle up to 50o; however,

for I = 0.9 and 1.3, the design problem is a little more sensitive, especially at the lower

values of K.

The nondimensional despin time is shown in figures 4(b), 5(b), and 6(b). This

parameter can be important, for instance, when the despin of spinning atmospheric entry

probes is being considered. It is seen again that for I = 0.1 the two-dimensional despin

time (F o = 0 o) is a very good estimation of the three-dimensional despin time except

when K/I is chosen very small and F o is large. For the larger values of I, the

despin time would be grossly in error if the two-dimensional results were used where

there was a significant amount of coning.

The maximum nondimensional cable tension shown in figures 4(c), 5(c), and 6(c) is

also very near the two-dimensional value for I = 0.1 except when K/I is very small,

whereas at the larger values of I both initial coning angle and changes in K produce

large variations in this parameter.

The parameter _ at w 3 = 0 represents the nondimensional cable length required

for despin and is plotted in figures 4(d), 5(d), and 6(d). The variations of this parameter

for changes in F o and K are again small for I = 0.1 but grow larger for the larger

values of I.

In general, figures 4, 5, and 6 show that for a slender body (I = 0.1), the two-

dimensional theory is probably sufficient for most engineering purposes unless very small

despin weights or very small values of a are desired, whereas for more disk-like bodies
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(I = 0.9 and 1.3), a more thorough analysis should be made, especially when large coning

angles or small values of K are to be encountered.

CONC LUDING REMARKS

Integration of the equations which describe the three-dimensional motion of a

spinning rigid body during the yo-yo despin process must be done numerically because no

general analytical solutions to these equations have been derived. This paper presents

the equations and their derivation and points out that special precaution must be taken at

the beginning of the numerical integration procedure because of a singularity in the coef-

ficient matrix of the differential equations at the initial instant of motion. A convenient

method of nondimensionalization is also presented which allows the reduction of the

parameters necessary for integration to be reduced to four: inertia ratio of body I,

inertia factor for despin weights K, initial angular velocity ratio W2o/COlo , and initial

coning angle F o. An analysis of some particular cases shows that despin time, cable

tension, and cable length may be computed with good accuracy by the two-dimensional

approximations for some range of F o and K/I for all the values of the inertia ratio I

studied. For I = 0.1, it is found that the two-dimensional approximations hold very well

for all F o if the ratio K/I is above 0.02. For I = 0.9 and 1.3, it is found that the

range of applicability of the two-dimensional results should be restricted to values of

Fo of about 10° to 20 ° depending upon the accuracy which is required.

In every case studied herein, the cross-axis spin rate after despin is found to be

less than or equal to its initial value, and therefore, it appears that the yo-yo device also

has a damping effect on this component of the angular velocity vector.

For this study of the tangential despin, the value of the angle ot did not increase

beyond the value of the initial coning angle for the three time histories presented and did

not reach a value of 90 ° for any of the cases integrated.

An important point should also be made here concerning the length of cable required

to despin the body. It can be observed that the nondimensional cable length _ required

to despin is very sensitive to both the coning angle and the ratio K/I. A slight misjudg-

ment of this value could lead to serious difficulties if some initial coning exists. For

instance, if the cable length is designed from two-dimensional considerations, it may be

too long and may not unwind and release properly.

Langley Research Center,

National Aeronautics and Space Administration,

Langley Station, Hampton, Va., September 7, 1966,

124-07-02-35-23.
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APPENDIX A

DERIVATION OF THE EQUATIONS OF MOTION OF A DESPIN WEIGHT

In the paper, it was pointed out that the equations of motion of a despin weight can

be written as

-I" = m d2_
dt 2

where

*"= rl; + r2J + r31_ (A1)

and rl, r2, and r 3 are given in equations (2) and ;r is found in equation (3). In

this appendix the nondimensional forms of these parameters are used and, therefore,

equation (12) of the main text is derived here rather than equation (9).

The nondimensional radius vector r is formed as

r = - (A2)a

When derivatives are taken in terms of the nondimensional time

following substitutions may be made

(.) = (), d._/.T
dt

7 in place of t, the

or using the definitions of equations (10)

also,

(') = ()' W3o

fi

(") = ( )" _2o
I+!-

K

(A3)

(A4)

Equation (7) may be rewritten as

I3w2 o

2a +_

__W=ma
d2r ¢o2o

d_'2 1 +I
K
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or

: K d2r
-W -

_ I dr2I +_

(AS)

It is found convenient for computations to introduce another nondimensional form for the

angular rotation vector (0

The derivatives of the vector r

_* _ I2_w = + _ w (A6)

can be formed in the following manner:

,2, d_ _' _*
V- -r +w ×F

d_-

or

V1 = _1 + w_F3- _F2_

V2 = F_ + _;F I - _F31

I

I

_3 _'3 + _2 _2FIJ

The relative derivatives of the components of r are found from

(A7)

~'ri= '+ , (i= I, 2, and 3) (A8)

and from equations (2) of the main text

rlfl = _fl-_= sin/3cos or- _2

aF 2

F2/3 off =gl cos/3cose

~ : aF3 _

r3fl Off -sin

oF1
Fla _ = F3 sin/3

_F 2

F2c_ aot -F 3 cos fl

r3a -13 cos

(A9)
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The "absolute" acceleration is then

d 2 *
__ _ 2..,, 2.*, 2. 2.., 2.., _,_r r +w ×r+w ×r +w

dz2

The "relative" acceleration of r is needed and is

xV (A10)

"  i/9r =r i = + i_ + '/9'+ (i= 1, 2, and 3) (All)

where

N

rlfl

r2fl

N

r3_

_'1_ = (_3/9 sin _ + _'3 cos /9)/9'

r2o_

r3a

: (cosflcosc_-r2/9) fl - (sin13sin_+r22

= (?l[3 + sin fi cos ot>/9' + (_lot+ cos /g sin ol)_'

= -(cos

+ ({30t sin /9)Or'

= (r'3 sin/9- _3_ cos /9)_'- (_3_

= -(cos o_)fl' + ([9 sin o_)ot'

(A12)

In equation (A10) the Coriolis and centripetal accelerations may be written together as

C i where

C1 ~*~' -*~' *~ *~ "_= w2r 3 - w3r 2 + _2V3 - _3V21

C 2 = w3r 1 - ¢vlr 3 + w3V 1 - COlV3

~,-, _,~, _1"_2 ~*~C3 wlr 2 ¢o2r 1 += _ w2V 1

and the Euler terms

(A13)

E1 = w_'r3 - _{'r'2_

E2 w_'}'l _ _'r'3 / (A14)

If the Euler equations are used as given in equations (11) along with the definition in equa-

tion (A6), the derivatives w i may be replaced in equation (A14) by the variables wi, ,_
_, _, and T. Also if the main text of this paper is referred to for the components of T,
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the derivatives andother expressions derived in this appendixmay be manipulatedto
obtain an expression in the form of equation(12)or

3

aijXj = bi
j=l

(i = 1, 2, and 3) (A15)

where corresponds to /3, a, and 1" and

~al3 =KI sin/3 cosot+I_ 3 sinacos _+ _2 cosot

a21 = r2/3

a22 = r2a

I
_23 = -

a31 = r3/3

a32 = r3a

cos /3 cos a - :1 cos a + Ir 3 sin a sin /3

I
ff33 = - _ sin a - IF 2 sin a sin/3 - Ir 1 sin a cos/3

I_i= ICI _ ~,ri/3/3,_ ::aa,+:3(l_i)_b_ 1 I

:2 = C2 - ~' ' - r2aa + F3(1 - I)w::* I

b3 = C3 - r3/3/3- r3J' - :2(I - I)w2w3 - _i(I - I)WlW
I

where a and /3 may be written in terms of _ and _ by use of equations (10) and b*

may be rewritten by equation (A6). These expressions give the information required to

integrate the governing equations (12).
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INITIAL CONDITIONS

The conditions which must be satisfied at the initial instant are: (1) the velocity of

the despin weights relative to the body is initially zero and (2) the unwind angle _ is

also zero. The angle _ at the initial instant is not prespecified by the choice of coor-

dinates. However, when the conditions - = =r o 0 and /3o 0 are applied, it is found the

oto = 0 is a necessary initial condition. Furthermore, when these conditions are applied

to the coefficient matrix in equations (12), all the elements _j are found to be zero

except a23 which is the coefficient of the initial nondimensional cable tension T in

the second equation. Equations (12) then provide the following expressions which must

be valid at the initial instant:

/3o = 2o + 1

WloW2 o
To =

1+_
(B1)

If it is noted that

_3o = 1

it can be observed that if I, K, _1o' and 52o are known, the initial values of all the

other quantities _o, _o, _o, _'o, and Yro are specified. The fact that only four quan-

tities are necessary to specify the motion of this system leads to reductions in the amount

of effort required to present the data.

Equations (15) could now be integrated if it were not for the fact that the matrix of
t

elements _ij is singular at the initial instant and therefore T, Y6' and Y7 cannot be

computed initially. It is, therefore, necessary to find other expressions which will be

valid at the initial instant. This procedure has already been done for T o as was shown

in equations (B1). The initial values of Y6 and y_, which correspond to /_o and So,

are found by differentiating equations (12) with respect to the nondimensional time r and

applying the initial conditions which are given. When this is done, two relations valid at

the initial instant are found

all/3 o + a12_ o = b 1 - a13 :o/
a31/_ o + a32_ o b 3 ff33ToJ

(B2)
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After taking the appropriate derivatives andmanipulating, the desired initial conditions
are foundto be

_) K__ ,-- O/ O)

/30 _'o 2oo)2o + o)30 + 3 o 20 3K o

0_O : - _7" _O +
/30 3/30 io

_ -') 2 °
+ WloW30 3 /30o)20 - 3K _o

(B3)

T I

which are the initial values of the quantities Y6 and Y7 in equations (15), and the

values of Wlo' W2o' and W3o may be found from equations (11) at the initial instant.

These sets of initial conditions are used to start the integration and once started, equa-

tions (15) are integrated by a standard fourth-order Runge-Kutta numerical integration

technique.

In place of presenting initial conditions in terms of _1o and _2o' it was decided

that the initial coning angle F o and the ratio _2o/_1o would be more significant and,

therefore, these quantities are the parameters which represent the initial conditions in

the data presented. If F o and W2o/Wlo are given initial conditions, the quantities

_1o and _2o must be determined from them so that equations (15) may be integrated.

By notingthat

o)20 _ o)20

Wlo ¢°1o

and by equations (16) and (17), the component of the nondimensional angular velocity vector

along the x 1 body axis at the initial instant is

I tan F o
Wlo = e (B4)

to)lo)

and the x 2 component

-

The e in equation (B4) is chosen as positive or negative unity so that the _12o com-

ponent of the angular rotation vector is put into the appropriate quadrant in the Xl,X 2
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plane. For this study it is assumed without loss of generality that the Xl, x2, and x 3

coordinate system is chosen so that at the initial instant, the parameter _ 2o is posi-

tive. In this case e is determined by

e = sgn(_-_o)lw2° (B6)
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